Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1314-1320, 2011.
Article in Chinese | WPRIM | ID: wpr-232992

ABSTRACT

This study is to investigate the effect of the major chemical composition in rhizome of Pterocypsela elata, lactuside B, on expression of bcl-2, bax mRNA and their protein in rats' cerebral cortex after cerebral ischemia-reperfusion injury. First, middle cerebral artery ischemia-reperfusion injury model was established, and each group was treated with the corresponding medicines. Animals were separately sacrificed at 24 h and 72 h. The brain infarct volumes were detected by TTC dye, bcl-2 and bax mRNA expression was checked by RT-PCR, and the proteins of bcl-2 and bax were explored by two-step immunohistochemistry in cerebral cortex of rats. Lactuside B can reduce brain infarct volume of cerebral cortex of rats, increase the expression of bcl-2 mRNA and decrease that of bax mRNA. Moreover, the ratio of bcl-2 to bax mRNA is higher in 12.5 and 25 mg kg(-1) dose group, respectively, which is significantly different from that of model group (P < 0.05 or P < 0.01). Generally, either 12.5 or 25 mg kg(-1) dose group is better than positive control medicine nimodipine (P < 0.05 or P < 0.01). In addition, the expression of bcl-2 and bax protein is consistent with their gene expression. Infarct volume and the ratio of bcl-2 to bax mRNA expression are significantly different (P < 0.05 or P < 0.01) between 72 h and 24 h group. The results demonstrated that lactuside B could play a good role in resisting cerebral ischemia by upregulating the expression of bcl-2 mRNA and protein and downregulating that of bax mRNA and protein.


Subject(s)
Animals , Male , Rats , Apoptosis , Asteraceae , Chemistry , Brain Ischemia , Metabolism , Pathology , Cerebral Cortex , Metabolism , Pathology , Dose-Response Relationship, Drug , Glucosides , Pharmacology , Neurons , Pathology , Plants, Medicinal , Chemistry , Proto-Oncogene Proteins c-bcl-2 , Genetics , Metabolism , RNA, Messenger , Metabolism , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury , Metabolism , Pathology , Rhizome , Chemistry , Vasodilator Agents , Pharmacology , bcl-2-Associated X Protein , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL